
hhh

Rex
A Scanner Generator

J. Grosch

hhh

hhh
GESELLSCHAFT FÜR MATHEMATIK
UND DATENVERARBEITUNG MBH

FORSCHUNGSSTELLE FÜR
PROGRAMMSTRUKTUREN
AN DER UNIVERSITÄT KARLSRUHE

hhh

Project

Compiler Generation

hhh

Rex - A Scanner Generator

Josef Grosch

July 31, 1992

hhh

Report No. 5

Copyright  1992 GMD

Gesellschaft für Mathematik und Datenverarbeitung mbH
Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1
D-7500 Karlsruhe

Rex 1

1. Introduction

Rex generates programs to be used in lexical analysis of text. A typical application is the
generation of scanners for compilers. Rex stands for Regular EXpression tool. In principle it is a
remake of LEX [Les75].

Rex processes a specification containing regular expressions to be searched for, and actions
written in C or Modula-2 to be executed when expressions are found. Unrecognized portions of
the input are copied by default to standard output. Rex generates a table-driven scanner consist-
ing of a scanner routine and control tables. The scanner routine implements a tunnel automaton
[Gro89] and contains a copy of the specified actions.

The scanners generated by Rex are 5 times faster and up to 5 times smaller than those gen-
erated by LEX. It is possible to reach a speed of 180,000 to 195,000 lines per minute on a MC
68020 processor (including input from file). If hashing of identifiers is performed additionally
the speed is between 125,000 and 150,000 lines per minute. The generator Rex itself is 10 to 20
times faster than LEX in typical cases. Like LEX, Rex has all the features necessary to scan
contemporary languages: that is the left and the right context can be taken into account to iden-
tify a token. The left context is handled by so-called start states and the right context by addi-
tional regular expressions. The source coordinates (line and column number) of recognized
words are calculated automatically. Scanners can be generated in the languages C and Modula-2.
Rex itself is implemented in Modula-2.

The following chapters constitute the user manual of Rex. Chapter 2 gives an overview of
the operation of Rex and how its output is to be integrated in e. g. compilers. Chapter 3
describes the specification language. Chapter 4 summarizes the predefined items of the
specification language. Chapter 5 contains the specification of the interface of the generated
scanners. Chapter 6 shows how to invoke and use Rex. Chapter 7 contains some details of the
implementation. Chapter 8 describes the differences between Rex and LEX for those already
familiar with LEX. The appendices contain a grammar for the input language and some exam-
ples.

2. Overview

Figure 1 gives an overview of the observable behaviour of Rex. It takes as input a
specification of a lexical analyser written in the language described in the next chapter. The out-
put is the source text of a scanner and scanner tables (in case of Modula-2). The source text con-
sists of a specification and a body part. These parts are files with the suffixes ’h’ and ’c’ if C is
the target language. In the case of Modula-2 the parts are a definition and an implementation
module. The scanner requires a source module to get blocks of characters e. g. by input from
file. Rex can be asked to provide a prototype source module which performs input from the
UNIX standard input file. Additionally Rex can be asked to provide a main program to serve as
test driver of the scanner. This main program calls the scanner routine until the end of the input
is reached.

The above mentioned source programs constitute the minimum configuration to run the
generated scanner. What is happening after the compilation of the program modules is shown in
the "run time" half of Fig. 1. During initialization the scanner reads its tables from a file (in case
of Modula-2 − C uses initialized arrays). Then the scanner driver starts calling the scanner rou-
tine which in turn sometimes calls the source module routines to get characters. The data flow is
in the opposite direction. The source module returns blocks of characters to the scanner. The
scanner analyzes the character stream, executes the associated actions upon finding character
sequences matched by regular expressions, and eventually returns tokens to the scanner driver.
In general the scanner driver can be replaced by any other main program or subroutine like e. g.
a parser.

Rex 2

Specifi-
cation

Rex
Scanner

body

Scanner
spec

Scanner
driver

Source
spec

Source
body

Scanner
tables

Scanner
driver

Scanner

Source

Input

...

generation time run time

data flow
compilation
invocation / use

program / executable module

file

Fig. 1: Rex Overview

3. Specification Language

The input of Rex consists of 3 parts:

- code written in the target language to be copied unchanged to the output (see 3.7.)
- definitions of named regular expressions and start states (see 3.4. + 3.5.)
- a set of regular expressions with associated actions written in the target language (see 3.2.)

The first two parts are optional. We discuss the three parts in reverse order after introducing
some lexical conventions.

3.1. Lexical Conventions

The specification can be written in unformatted manner. That means white space in the
form of blanks, tab characters, and newline characters has no meaning except to separate other
items. Comments are written in the style of C: text included in ’/*’ and ’*/’ is ignored. Com-
ments may not be nested. The specification uses a few keywords which should be escaped if
needed as identifiers (see below):

Rex 3

BEGIN CLOSE DEFAULT DEFINE EOF
EXPORT GLOBAL LOCAL NOT RULE
RULES SCANNER START

The following special characters are used as operators, delimiters, or escape characters:

= . , : :- " # + - * / | ? () [] { } < > \

Besides keywords and the above special characters a scanner specification is composed of
characters, numbers, identifiers, strings, and actions.

A character denotes itself. Special characters have to be escaped using a preceding escape
character. The escape character is a backslash: ’\’. For certain non-graphic characters the same
escape sequences as in C are possible:

newline NL \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f

Other unprintable characters are represented by the escape character followed by an integer
decimal number giving the internal coding.

; \+ \\ \n \10

Numbers denote numerical integer values. They consist of a sequence of digits.

8 12 0

Identifiers are used to refer to named entities. They consist of a letter followed by letters,
digits, or underscore characters ’_’. Lower case as well as upper case letters are possible. If an
identifier is not defined its character sequence is treated as a string. Identifiers that are keywords
have to be escaped by a preceding escape character.

letter HexDigit under_score \BEGIN END

Strings denote a sequence of characters. They consist of a sequence of characters enclosed
in double quotes ’"’. It is not possible to include a double quote or an newline character into a
string. No escape is needed within strings. It is a shorthand for escaping a whole sequence of
characters.

"BEGIN" ":=" "\"

Actions are statements to be copied unchanged into the generated code. The statements
have to be written in the desired target language. The actions have to be enclosed in braces ’{’
’}’. The characters ’{’ and ’}’ can be used within the actions as long as they are either properly
nested or contained in strings or in character constants. Otherwise they have to be escaped by a
backslash character ’\’. The escape character ’\’ has to be escaped by itself if it is used outside of
strings or character constants: ’\\’. In general, a backslash character ‘\‘ can be used to escape any
character outside of strings or character constants. Within those tokens the escape conventions
are disabled and the tokens are left unchanged. There are additionally statements available to
aid in scanning (see section 4.4.).

{ printf ("BEGIN recognized\n"); }
{ return SymBegin; }
{ if (level > 0) { GetWord (String); Concatenate (Word, String); } }
{ printf ("} recognized\n"); }

Rex 4

3.2. Regular Expressions

In general the specification of a scanner consists of the keyword RULE or RULES followed
by a list of regular expressions each one associated with an action.

RULE
BEGIN : { printf ("BEGIN recognized"); }
END : { printf ("END recognized"); }
; : { printf ("; recognized"); }

The scanner generated from the above example specification would print an appropriate message
upon finding one of the character sequences ’BEGIN’, ’END’, or ’;’ in the input whenever they
appear. We say a character sequence and a regular expression match if the character sequence
has a structure according to the regular expression.

In general the input of the scanner is searched for character sequences which match one of
the specified regular expressions and the associated action is executed. Input characters which
are not matched by any regular expression are copied by default to standard output.

The syntax to write regular expressions is as follows (see Appendix 1 for a complete
definition of the syntax). The productions are given in increasing precedence:

Reg_Expr: Reg_Expr ’|’ Reg_Expr
| Reg_Expr Reg_Expr
| Reg_Expr ’+’
| Reg_Expr ’*’
| Reg_Expr ’?’
| Reg_Expr ’[’ Number ’]’
| Reg_Expr ’[’ Number ’-’ Number ’]’
| ’(’ Reg_Expr ’)’
| Character_Set
| Character
| Identifier
| String
.

- A character is matched by a single identical character.

a matches the character ’a’
\t matches a tab character
\n matches a newline character
\10 matches a newline character (only if ASCII is used)
\\ matches the character ’\’

- A string is matched by a character sequence identical to the characters that make up the
string.

":=" matches the character sequence ’:=’
"\" matches the character ’\’

- An identifier may be defined to refer to a regular expression. In this case it matches the
same characters as the regular expression. An undefined identifier is treated like a string, it
matches its own character sequence.

END matches the character sequence ’END’
\NOT matches the character sequence ’NOT’

- A number is treated like a string, it matches its own character sequence.

007 matches the character sequence ’007’

- A character set matches one arbitrary character contained in the set. It is written as a
sequence of characters enclosed in braces. Ranges may be used to include intervals of char-
acters. The same escapes as described for characters may be used. Unprintable characters

Rex 5

and the following ones have to be escaped within character sets:

’-’ ’}’ ’ ’ ’\’

The predefined identifier ANY stands for a character set containing every character except
the newline character. If a character set is preceded by the operator ’−’ it matches one arbi-
trary character except the ones contained in the set.

{ +\-*/ } matches the arithmetic operators + - * /
{ A-Z a-z 0-9 } matches all letters and digits
- { \n } matches all characters except the newline character
ANY matches all characters except the newline character

- Two regular expressions separated by the operator ’|’ match characters that are matched by
the first or by the second regular expressions.

a | b matches the characters ’a’ or ’b’

- Two regular expressions following each other with no operator in between match the con-
catenation of character sequences matched by the single regular expressions.

a b matches the character sequence ’ab’

- The operator ’?’ matches a character sequence matched by the preceding regular expression
or the empty character sequence. In other words, the specified characters are optional.

a b ? matches the character sequences ’a’ and ’ab’

- The operator ’+’ matches a character sequence which can be matched by the repetition of
the preceding regular expression 1 or more times.

a + matches the character sequences ’a’, ’aa’, ’aaa’, ...

- The operator ’*’ matches a character sequence which can be matched by the repetition of
the preceding regular expression zero or more times.

a b * matches the character sequences ’a’, ’ab’, ’abb’,
’abbb’, ...

- A regular expression followed by a number in brackets matches a character sequence which
can be matched by the repetition of the preceding regular expression exactly the times
specified by the number.

a [4] matches the character sequence ’aaaa’

- A regular expression followed by a range in brackets matches a character sequence which
can be matched by the repetition of the preceding regular expression a number of times
lying in between of the two given numbers.

a [2-4] matches the character sequences ’aa’, ’aaa’, and ’aaaa’

- Parentheses ’(’ ’)’ can be used for grouping in more complex regular expressions.

(a | b+)? (c d)* matches strings like ’acdcd’, ’cdcdcd’, ’bcd’, or ’bbb’;
but not ’ab’, ’abb’, or ’abcd’.

A complete regular expression which is not part of any other regular expression is called a
pattern. A pattern is matched exactly in the same way as regular expressions. It can be aug-
mented by the following specifications.

- A pattern preceded by the operator ’<’ matches a character sequence only if it appears at
the beginning of a line.

< {a-z} + matches identifiers only at the beginning of lines

Rex 6

- A pattern followed by the operator ’>’ matches a character sequence only if it appears at
the end of a line.

" " + > matches trailing spaces
< C ANY * > matches FORTRAN comment lines

- A pattern followed by the operator ’/’ and a regular expression matches a character
sequence only if it is followed by a character sequence that is matched by the regular
expression behind the operator ’/’.

{0-9} + / ".." matches numbers, but only if followed by two dots

- Several patterns that share a common action can be given in a comma separated list, thus
the action has to be specified only once.

’ - {\n’} * ’, \" - {\n"} * \"
matches both possible forms of Modula-2 strings

3.3. Ambiguous Specifications

Rex can handle ambiguous specifications. When more than one expression can match the
current input, Rex chooses as follows:

- The longest match is preferred.

- Among rules which match the same number of characters, the rule given first is preferred.

The length of a match is the number of matched characters plus the number of characters
matched by the regular expression following the "right context" operator ’/’ if applicable.

Example:

{0-9} + / ".." : { return SymDecimal; }
{0-9} + "." {0-9} * : { return SymReal ; }
".." : { return SymRange ; }
"." : { return SymDot ; }

Suppose the right context of the first rule above is missing. The input

1..

would be recognized as SymReal and SymDot because SymReal matches two characters. To get
the right solution the right context is necessary. Now the input is recognized as SymDecimal and
SymRange because SymDecimal matches 3 characters.

Example:

BEGIN : { return SymBegin; }
END : { return SymEnd ; }
{A-Z} + : { return SymIdent; }

The rules for keywords should be given before the rule for identifiers. Otherwise the key-
words would be recognized as identifiers.

3.4. Definitions

Regular expressions can be given names. This serves to avoid duplication of regular
expressions or to increase the expressive power of a specification. After the keyword DEFINE a
list of identifiers can be associated with regular expressions. Defined identifiers appearing within
regular expressions are replaced by the regular expression given in the definition. Undefined
identifiers are treated as strings. The identifier ANY is predefined to match any character except
newline.

Rex 7

Example:

letter = { A-Z a-z } .
digit = { 0-9 } .
string_character = - { " \n } .
ANY = - { \n } .

3.5. Start States

For complex tasks Rex offers a facility called "start states". Usually the generated scanner
is always in the standard state called STD and all specified patterns are recognized. In general
the scanner is allowed to change its state between an arbitrary number of user defined states. The
patterns can be specified to be recognized only in certain states. Initially the scanner is in the
standard start state STD. There are special statements to change the state of the scanner (see
section 4.4.). They can be used in the actions of the rules.

Start states have to be defined by giving a list of identifiers after the keyword START. The
identifiers may be separated by commas. The standard state STD is predefined.

- A pattern without given start states is recognized in every start state the scanner is in.

- A pattern preceded by a list of start states (inclosed in ’#’ characters) is recognized only if
the scanner is in one of the listed start states. Again the listed start states may be separated
by commas.

- A pattern preceded by the keyword NOT and a list of start states (enclosed in ’#’ charac-
ters) is recognized only if the scanner is in a start state not listed.

Example:

START comment
RULE

"(*" : {++ level; yyStart (comment);}
#comment# "*)" : {-- level; if (level == 0) yyStart (STD);}
#comment# "(" | "*" | - {*(} + : {}
#STD# {0-9} + : {return SymNumber;}

The above example shows how to handle nested comments in a Modula-2 scanner. The
rule for opening comment brackets is recognized in all states. The nesting level is increased and
we change the start state to comment with the predefined statement yyStart. Closing comment
brackets are recognized only if the scanner is in start state comment. Upon their recognition the
nesting level is decreased. Should the nesting level reach zero the comment is finished and we
change the state back to STD using yyStart again. While the scanner is in start state comment

everything except opening and closing comment brackets is skipped by specifying an empty
action. The last rule specifying the structure of decimal numbers is recognized only in the start
state STD.

The problem of how to declare the variable for counting the nesting level of comments is
solved in section 3.7.

3.6. Scanner Name

A specification may be optionally headed by a name for the scanner to be generated:

Example:

SCANNER lexer

The identifier is used to derive the names of the scanner and source modules, the file name for
the scanner tables, and a prefix for the objects exported by the scanner. If the name is missing it
defaults to Scanner. In the following we refer to this name by <Scanner>. The prefixes

Rex 8

<Scanner> and <Scanner>_ are generated only if this clause is present. Otherwise they are omit-
ted in order to be compatible with former versions of Rex.

3.7. Target Code

The actions associated with regular expressions may need variables or in general arbitrary
declarations to perform their task. A scanner specification may be preceded by several kinds of
sections written in the target language. The syntax rules for actions apply to these sections, too.
These sections are copied unchanged and unchecked to the generated scanner at the following
places:

- Target code after the keyword EXPORT is included in the specification part (definition
module) of the generated scanner. It allows to extend the set of objects exported by the
scanner module. If not given it is predefined as described below.

- Target code after the keyword GLOBAL is included in the scanner module at level 0, that
is the extent of variables given in this section is the run time of the whole program. If not
given it is predefined as described below.

- Target code after the keyword LOCAL is included in the scanner routine called
<Scanner>_GetToken (at level 1), that is the extent of variables given in this section is one
invocation of this routine.

- Target code after the keyword BEGIN is included in the routine <Scanner>_BeginScanner
which may be called to initialize the data structures declared in the sections EXPORT and
GLOBAL.

- Target code after the keyword CLOSE is included in the routine <Scanner>_CloseScanner
which may be called after scanning is finished. This statements can be used to finalize the
data structures declared in the sections EXPORT and GLOBAL.

- Target code after the keyword DEFAULT is included in the scanner routine to be executed
whenever a character is not matched by one of the regular expressions. It can be used to
detect illegal characters for example. If not given it is predefined as described below.

- Target code after the keyword EOF is included in the scanner routine to be executed upon
reaching the end of the input. It can be used to return a value different from the predefined
one (<Scanner>_EofToken = 0) or to check for unclosed comments or strings for example.

If the EXPORT, GLOBAL, and DEFAULT sections are not used the following predefined
declarations are included:

If the target language is C:

EXPORT {
include "Positions.h"
typedef struct { tPosition Position; } <Scanner>_tScanAttribute;
extern void <Scanner>_ErrorAttribute (int Token,

<Scanner>_tScanAttribute * Attribute);
}

GLOBAL {
void <Scanner>_ErrorAttribute (Token, Attribute)

int Token;
<Scanner>_tScanAttribute * Attribute;
{ }

}

DEFAULT {
yyEcho;

}

Rex 9

If the target language is Modula-2:

EXPORT {
IMPORT Positions;
TYPE tScanAttribute = RECORD Position: Positions.tPosition; END;
PROCEDURE ErrorAttribute (Token: INTEGER; VAR Attribute: tScanAttribute);
}

GLOBAL {
PROCEDURE ErrorAttribute (Token: INTEGER; VAR Attribute: tScanAttribute);

BEGIN
END ErrorAttribute;

}

DEFAULT {
yyEcho;

}

These two sections import the type tPosition from a module named Positions and they
declare the type <Scanner>_tScanAttribute as well as the procedure <Scanner>_ErrorAttribute.
These items are needed in combination with parser generators. A variable called
<Scanner>_Attribute of type <Scanner>_tScanAttribute is used to communicate additional pro-
perties of the tokens from the scanner to the parser. The type <Scanner>_tScanAttribute has to
be a struct (record) type with at least one member (field) called Position of type tPosition. tPosi-
tion has to be a struct (record) type with at least two members (fields) called Line and Column
(see section 3.8.). It can be imported from the predefined module Positions or from a user
modified version of it.

During automatic error repair a parser may insert tokens. In this case the parser calls the
procedure <Scanner>_ErrorAttribute to ask for the additional properties of an inserted token
which is given by the parameter Token. The types tPosition and <Scanner>_tScanAttribute are
predefined as given above and the procedure <Scanner>_ErrorAttribute is empty. If only one of
the sections EXPORT or GLOBAL is used, it has to contain declarations consistent with the
remaining predefined ones.

3.8. Source Position

The generated scanners automatically compute the line and column position of every token.
This position can be accessed via the fields Position.Line and Position.Column of the global
variable <Scanner>_Attribute as described in the section about the Scanner Interface. The
source position is computed automatically if the action of a rule is preceded by a colon like in all
the examples so far. However, if the character ’-’ is appended to the colon, the calculation of the
source position can be disabled for a rule.

There are mainly two reasons for not to compute the position. First, some "compound"
tokens have to be recognized by the combination of several rules (usually in connection with a
start state). In order to get the correct position, which is the position yielded by the first rule, the
calculation of the position has to be disabled for the following rules.

Example (Pascal strings):

START string
RULE
#STD# ’ : {yyStart (string);}
#string# - {’\t\n} + :- {}
#string# ’’ :- {}
#string# ’ :- {yyStart (STD); return SymString;}

Second, there is no need to calculate the source position in rules that skip input characters
without returning a token. In this case disabling the computation of the position yields an

Rex 10

increase in run time efficiency. The typical examples are comments. The example given in the
chapter about Start States should be rewritten as follows:

Example (Modula-2 comments):

START comment
RULE

"(*" :- {++ level; yyStart (comment);}
#comment# "*)" :- {-- level; if (level == 0) yyStart (STD);}
#comment# "(" | "*" | - {*(\t\n} + :- {}

4. Predefined Items

Rex knows several predefined items described in the next sections.

4.1. Definitions

The identifier ANY is predefined to match one arbitrary character except newline.

DEFINE ANY = - { \n } .

4.2. Start States

The identifier STD is predefined to denote the standard start state of Rex. The generated
scanners are initially in this state.

START STD

4.3. Rules

The 4 for rules given below are predefined after the user specified rules. By giving own
rules the user can overwrite these because of the strategy to solve ambiguities. The predefined
rules help to calculate the line and column positions and to skip blanks efficiently.

RULE
" " :- {}
\t :- {yyTab;}
\n :- {yyEol (0);}
ANY :- {yyEcho;}

4.4. Action Statements

The following statements can be used within the actions associated with regular expres-
sions:

<Scanner>_GetWord (v);
This statement gives access to the matched character sequence.
In C the sequence is returned in the variable v which must be of type char v [].
Additionally the length of the sequence is returned as result of the function.
In Modula-2 the sequence is returned in the variable v which must be of type
Strings.tString.

<Scanner>_GetLower (v);
Like <Scanner>_GetWord, except that every letter is normalized to lower case.

<Scanner>_GetUpper (v);
Like <Scanner>_GetWord, except that every letter is normalized to upper case.

yyEcho; The matched character sequence is printed on standard output.

yyLess (n); The matched character sequence is truncated to the first n characters. The
other characters are rescanned for the next character sequence.

Rex 11

yyStart (s); The start state is changed to state s.

yyPrevious; The start state is changed to the state valid before the last execution of yyStart
or yyPrevious.

yyStartState This is not a statement but an expression of type short or SHORTCARD,
respectively, whose value is the current start state. It can be used to execute
different statements in one action depending on the current start state.

yyTab; This statement should be used if a regular expression is specified by the user to
process tab characters. Its purpose is to update the internal variable to calculate
the column position of tokens. yyTab works only if the tab character exclusive-
ly is specified by a rule.

yyTab1 (a); Like yyTab this statement should be used if a regular expression is specified by
the user to process tab characters. Its purpose is to update the internal variable
to calculate the column position of tokens. yyTab1 works if the tab character is
embedded in other characters. The parameter a must specify the number of
characters before the tab character.

yyEol (n); This statement should be used if a regular expression is specified by the user to
process newline characters. Its purpose is to update the internal variables to
calculate the line and column position of tokens. yyEol should be executed
once for every newline character matched. The parameter n should specify the
number of characters matched after the last newline character. In simple cases
where the pattern consists only of a newline character one invocation of yyEol
(0); is sufficient.

5. Interface of the Generated Scanners

The scanners generated by Rex offer an interface to be used by a main program like e. g. a
parser and they require a source module for blocked input of characters to obey a certain inter-
face. The structure of these two interfaces is independent from a specific target language. As the
syntactic details vary from one target language to another we discuss the interfaces in the fol-
lowing target language specific chapters.

5.1. C

It has been already mentioned that the prefixes <Scanner> and <Scanner>_ are generated
only if the keyword SCANNER is present. Otherwise they are omitted in order to be compatible
with former versions of Rex.

5.1.1. Scanner Interface

The scanners generated by Rex offer an interface given by the following specification file
named <Scanner>.h:

Rex 12

include "Positions.h"
typedef struct { tPosition Position; } <Scanner>_tScanAttribute;
extern void <Scanner>_ErrorAttribute (int Token,

<Scanner>_tScanAttribute * Attribute);

define <Scanner>_EofToken 0

extern char * <Scanner>_TokenPtr ;
extern short <Scanner>_TokenLength ;
extern <Scanner>_tScanAttribute <Scanner>_Attribute;
extern void (* <Scanner>_Exit) () ;

extern void <Scanner>_BeginScanner ();
extern void <Scanner>_BeginFile (char * FileName);
extern int <Scanner>_GetToken ();
extern int <Scanner>_GetWord (char * Word);
extern int <Scanner>_GetLower (char * Word);
extern int <Scanner>_GetUpper (char * Word);
extern void <Scanner>_CloseFile ();
extern void <Scanner>_CloseScanner ();

- The procedure <Scanner>_GetToken is the central scanning routine. It returns the next to-
ken found in the input or whatever is specified in the actions associated with the regular ex-
pressions.

- The procedure <Scanner>_BeginFile may be called to open an input file or a nested include
file. It has one parameter of type ’char *’ (string) which specifies the file name. Include
files up to a nesting depth of 15 can be processed. If not called input is read from standard
input.

- The procedure <Scanner>_CloseFile may be called to close the actual input file (before
reaching end of file). <Scanner>_CloseFile is called automatically by the scanner upon
reaching end of file.

- The procedure <Scanner>_BeginScanner may be called to initialize user data.

- The procedure <Scanner>_CloseScanner may be called to finalize user data.

- The procedures <Scanner>_GetWord, <Scanner>_GetLower, and <Scanner>_GetUpper al-
low access to the matched character sequence as described in section 4.4.

- Alternatively, the matched character sequence can be accessed using the variables
<Scanner>_TokenPtr and <Scanner>_TokenLength. <Scanner>_TokenPtr points to the be-
ginning of the matched character sequence. <Scanner>_TokenLength specifies the number
of the matched characters. Note, the matched character sequence is not terminated by a ’\0’
character.

- The variable <Scanner>_Attribute is supposed to communicate additional properties of the
last token. The value must be provided by appropriate action statements. This variable is of
type <Scanner>_tScanAttribute which has to be a struct type with at least one member
called Position of type tPosition. tPosition has to be a struct type with at least two members
called Line and Column. The values of Line and Column are computed by the scanner, au-
tomatically. They indicate the source position of the actual token. The position of a token is
the position of the first character of the token. For exceptions see section 3.8. The types
<Scanner>_tScanAttribute and tPosition are predefined as given above. The definitions of
these types can be changed as described in section 3.7.

- During automatic error repair a parser may insert tokens. In this case the parser calls the
procedure <Scanner>_ErrorAttribute to ask for the additional properties of an inserted to-
ken which is given by the parameter Token. The procedure should return in the second ar-
gument called <Scanner>_Attribute a default value for the additional properties of the to-

Rex 13

ken Token.

- The variable <Scanner>_Exit refers to a procedure which is called upon an internal error in
the scanner. The default procedure terminates the program execution. The variable can be
changed to achieve a different behaviour.

- If the scanner reaches the end of the input it returns the special token called
<Scanner>_EofToken which is encoded by 0.

5.1.2. Source Interface

The scanners generated by Rex need a source module for blocked input of characters. Rex
can provide a prototype source module which reads from standard input or any file. It is con-
tained in the files <Scanner>Source.h and <Scanner>Source.c. The specification file
<Scanner>Source.h consists of something like:

extern int <Scanner>_BeginSource (char * FileName);
extern int <Scanner>_GetLine (int File, char * Buffer, int Size);
extern void <Scanner>_CloseSource (int File);

- <Scanner>_BeginSource is called from the scanner in order to open files or to initialize any
other source of input. If not called input is read from standard input.

- <Scanner>_GetLine is called to fill a buffer starting at address ’Buffer’ with a block of
maximal ’Size’ characters. Lines are terminated by newline characters (ASCII = 0xa).
<Scanner>_GetLine returns the number of characters transferred. Reasonable block sizes
are between 128 and 2048 or the length of a line. Smaller block sizes - especially block size
1 - will drastically slow down the scanner.

- <Scanner>_CloseSource is called from the scanner at end of file respectively at end of in-
put. It can be used to close files.

The body in the file <Scanner>Source.c has the following contents:

include "<Scanner>Source.h"
include "System.h"

int <Scanner>_BeginSource (FileName)
char * FileName;

{ return OpenInput (FileName); }

int <Scanner>_GetLine (File, Buffer, Size)
int File; char * Buffer; int Size;

{
register int n = Read (File, Buffer, Size);

ifdef Dialog
define IgnoreChar ’ ’
/* Add dummy after newline character in order to supply a lookahead for rex. */
/* This way newline tokens are recognized without typing an extra line. */

if (n > 0 && Buffer [n - 1] == ’0) Buffer [n ++] = IgnoreChar;
endif

return n;
}

void <Scanner>_CloseSource (File)
int File;

{ Close (File); }

The newline character may constitute a token of its own in applications such as dialog pro-
grams. Like for every other token, Rex needs at least a look-ahead of one character to recognize
this token. Therefore the user has to type not only one extra character but a complete extra input
line because usually input is line buffered by the operating system. This behaviour is undesir-

Rex 14

able. The problem can be solved by compiling the file <Scanner>Source.c with the option -DDi-
alog. This variant adds a dummy character after the newline character to serve as lookahead. The
dummy character should be a character that is ignored such as e. g. a blank.

5.1.3. Scanner Driver

To test a generated scanner a main program is necessary. Rex can provide a minimal main
program in the file <Scanner>Drv.c which can serve as test driver. It counts the tokens and
looks like the following:

include "Positions.h"
include "<Scanner>.h"

main ()
{

int Token, Count = 0;
char Word [256];

<Scanner>_BeginScanner ();
do {

Token = <Scanner>_GetToken ();
Count ++;

ifdef Debug
if (Token != <Scanner>_EofToken) (void) <Scanner>_GetWord (Word);
else Word [0] = ’\0’;
WritePosition (stdout, <Scanner>_Attribute.Position);
(void) printf ("%5d %s\n", Token, Word);

endif
} while (Token != <Scanner>_EofToken);
<Scanner>_CloseScanner ();
(void) printf ("%d\n", Count);
return 0;

}

5.2. Modula-2

5.2.1. Scanner Interface

The scanners generated by Rex offer an interface given by the following definition module
named <Scanner>.md:

Rex 15

DEFINITION MODULE <Scanner>;

IMPORT Positions, Strings;

TYPE tScanAttribute = RECORD Position: Positions.tPosition; END;
PROCEDURE ErrorAttribute (Token: INTEGER; VAR Attribute: tScanAttribute);

CONST EofToken = 0;

VAR TokenLength : INTEGER;
VAR Attribute : tScanAttribute;
VAR ScanTabName : ARRAY [0 .. 127] OF CHAR;
VAR Exit : PROC;

PROCEDURE BeginScanner ;
PROCEDURE BeginFile (FileName: ARRAY OF CHAR);
PROCEDURE GetToken (): INTEGER;
PROCEDURE GetWord (VAR Word: Strings.tString);
PROCEDURE GetLower (VAR Word: Strings.tString);
PROCEDURE GetUpper (VAR Word: Strings.tString);
PROCEDURE CloseFile ;
PROCEDURE CloseScanner ;

END <Scanner>.

- The procedure GetToken is the central scanning routine. It returns the next token found in
the input or whatever is specified in the actions associated with the regular expressions.

- The array ScanTabName specifies the name of the file containing the scanner tables. It is
initialized with the string "Scan.Tab". Therefore, the scanner tables are read by default
from a file with this name in the current directory. If a different name or location is desired
an arbitrary path name can be assigned to this array before calling GetToken the first time.

- The procedure BeginFile may be called to open an input file or a nested include file. The
parameter FileName specifies the file name. Include files up to a nesting depth of 15 can be
processed. If not called input is read from standard input.

- The procedure CloseFile may be called to close the actual input file (before reaching end of
file). CloseFile is called automatically by the scanner upon reaching end of file.

- The procedure BeginScanner may be called to initialize user data.

- The procedure CloseScanner may be called to finalize user data.

- The procedures GetWord, GetLower, and GetUpper allow access to the matched character
sequence as described in section 4.4.

- The variable TokenLength specifies the number of the matched characters.

- The variable Attribute is supposed to communicate additional properties of the last token.
The value must be provided by appropriate action statements. This variable is of type
tScanAttribute which has to be a record type with at least one field called Position of type
tPosition. tPosition has to be a record type with at least two fields called Line and Column.
The values of Line and Column are computed by the scanner, automatically. They indicate
the source position of the actual token. The position of a token is the position of the first
character of the token. For exceptions see section 3.8. The types tScanAttribute and tPosi-
tion are predefined as given above. The definitions of these types can be changed as
described in section 3.7.

- During automatic error repair a parser may insert tokens. In this case the parser calls the
procedure ErrorAttribute to ask for the additional properties of an inserted token which is
given by the parameter Token. The procedure should return in the second argument called
Attribute a default value for the additional properties of the token Token.

Rex 16

- The variable Exit refers to a procedure which is called upon an internal error in the scanner.
The default procedure terminates the program execution. The variable can be changed to
achieve a different behaviour.

- If the scanner reaches the end of the input it returns the special token called EofToken
which is encoded by 0.

5.2.2. Source Interface

The scanners generated by Rex need a source module for blocked input of characters. Rex
can provide a prototype source module which reads from standard input. It is contained in the
files <Scanner>Source.md and <Scanner>Source.mi. The definition module in the file
<Scanner>Source.md has the following contents:

DEFINITION MODULE <Scanner>Source;

FROM SYSTEM IMPORT ADDRESS;
FROM System IMPORT tFile;

PROCEDURE BeginSource (FileName: ARRAY OF CHAR): tFile;
PROCEDURE GetLine (File: tFile; Buffer: ADDRESS; Size: CARDINAL): INTEGER;
PROCEDURE CloseSource (File: tFile);

END <Scanner>Source.

- BeginSource is called from the scanner in order to open files or to initialize any other
source of input. If not called input is read from standard input.

- GetLine is called to fill a buffer starting at address ’Buffer’ with a block of maximal ’Size’
characters. Lines are terminated by newline characters (ASCII = 12C). GetLine returns the
number of characters transferred. Reasonable block sizes are between 128 and 2048 or the
length of a line. Smaller block sizes - especially block size 1 - will drastically slow down
the scanner.

- CloseSource is called from the scanner at end of file respectively at end of input. It can be
used to close files.

The implementation module in the file <Scanner>Source.mi has the following contents:

Rex 17

IMPLEMENTATION MODULE <Scanner>Source;

FROM SYSTEM IMPORT ADDRESS;
FROM System IMPORT tFile, OpenInput, Read, Close;

PROCEDURE BeginSource (FileName: ARRAY OF CHAR): tFile;
BEGIN

RETURN OpenInput (FileName);
END BeginSource;

PROCEDURE GetLine (File: tFile; Buffer: ADDRESS; Size: CARDINAL): INTEGER;
CONST IgnoreChar = ’ ’;
VAR n : INTEGER;
VAR BufferPtr: POINTER TO ARRAY [0..30000] OF CHAR;
BEGIN
(* # ifdef Dialog

n := Read (File, Buffer, Size);
(* Add dummy after newline character in order to supply a lookahead for rex. *)
(* This way newline tokens are recognized without typing an extra line. *)

BufferPtr := Buffer;
IF (n > 0) AND (BufferPtrˆ[n - 1] = 012C) THEN

BufferPtrˆ[n] := IgnoreChar; INC (n); END;
RETURN n;
else *)
RETURN Read (File, Buffer, Size);

(* # endif *)
END GetLine;

PROCEDURE CloseSource (File: tFile);
BEGIN

Close (File);
END CloseSource;

END <Scanner>Source.

The newline character may constitute a token of its own in applications such as dialog pro-
grams. Like for every other token, Rex needs at least a look-ahead of one character to recognize
this token. Therefore the user has to type not only one extra character but a complete extra input
line because usually input is line buffered by the operating system. This behaviour is undesir-
able. The problem can be solved by modifying the procedure GetLine in the file
<Scanner>Source.mi. The variant in the comment (* # ifdef Dialog ... # else *) adds a dummy
character after the newline character to serve as lookahead. The dummy character should be a
character that is ignored such as e. g. a blank.

5.2.3. Scanner Driver

To test a generated scanner a main program is necessary. Rex can provide a minimal main
program in the file <Scanner>Drv.mi which can serve as test driver. It counts the tokens and
looks like the following:

MODULE <Scanner>Drv;

FROM <Scanner> IMPORT BeginScanner, GetToken, GetWord, Attribute, EofToken,
CloseScanner;

FROM Strings IMPORT tString, WriteL;
FROM IO IMPORT StdOutput, WriteI, WriteC, WriteNl, CloseIO;
FROM Positions IMPORT WritePosition;
FROM System IMPORT Exit;

VAR Token : INTEGER;
Word : tString;
Debug : BOOLEAN;
Count : INTEGER;

Rex 18

BEGIN
Debug := FALSE;
Count := 0;
BeginScanner;
REPEAT

Token := GetToken ();
INC (Count);
IF Debug THEN

GetWord (Word);
WritePosition (StdOutput, Attribute.Position);
WriteI (StdOutput, Token, 5);
WriteC (StdOutput, ’ ’);
WriteL (StdOutput, Word);

END;
UNTIL Token = EofToken;
CloseScanner;
WriteI (StdOutput, Count, 0);
WriteNl (StdOutput);
CloseIO;
Exit (0);

END <Scanner>Drv.

6. Usage

NAME

rex − generator of lexical analysers

SYNOPSIS

rex [-options] [-ldir] [file]

DESCRIPTION

Rex generates programs to be used in lexical analysis of text. A typical application is the
generation of scanners for compilers. The input file contains regular expressions to be
searched for, and actions written in C or Modula-2 to be executed when strings according
to the expressions are found. Unrecognized portions of the input are copied to standard
output. To be able to recognize tokens depending on their context, Rex provides start
states to handle left context and the right context can be specified by an additional regu-
lar expression. If several regular expressions match the input characters, the longest
match is preferred. If there are still several possibilities, the regular expression given first
in the specification is chosen.

Rex generated scanners automatically provide the line and column position of each to-
ken. For languages like Pascal and Ada where the case of letters is insignificant tokens
can be normalized to lower or upper case. There are predefined rules to skip white space
like blanks, tabs, or newlines and there is a mechanism to handle include files. The gen-
erated scanners are table-driven deterministic finite automatons.

OPTIONS

a generate all (= sdm)

m generate a lexical analyser in Modula-2 (default)

c generate a lexical analyser in C

d generate a definition module for the lexical analyser

Rex 19

s generate support modules:
- a source module for input
- a main program to be used as test driver

r reduce the number of generated case/switch labels. Might be necessary due to compiler res-
trictions. Effects: slower scanner (2-4%), larger tables, same scanner size.

i use ISO 8 bit code (default: ASCII 7 bit code)

o optimize table size
Effects: slower scanner (0-15%), small tables, long generation time (factor 1-10)

n do not optimize table size
Effects: fast scanner, large tables (factor 1-10), short generation time

default: improve table size
Effects: slower scanner (0-5%), medium size tables (factor 1-2), medium generation time
(factor 1-2)

w suppress warnings

g generate # line directives

b do not partition charcater set into blocks

1 print statistics about the generated lexical analyser

ldir dir is the directory where Rex finds its table and data files

FILES

if output is in C:

<Scanner>.h specification of the generated scanner
<Scanner>.c body of the generated scanner
<Scanner>Source.h specification of support module source
<Scanner>Source.c body of support module source
<Scanner>Drv.c main program to serve as test driver

if output is in Modula-2:

<Scanner>.md definition module of the generated scanner
<Scanner>.mi implementation module of the generated scanner
<Scanner>Source.md definition module of support module source
<Scanner>Source.mi implementation module of support module source
<Scanner>Drv.mi main program to serve as test driver
<Scanner>.Tab tables to control the generated scanner

SEE ALSO

J. Grosch: "Rex - A Scanner Generator", GMD Forschungsstelle an der Universitaet
Karlsruhe, Compiler Generation Report No. 5, 1987

J. Grosch: "Efficient Generation of Lexical Analysers", Software - Practice & Experi-
ence, 19 (11), 1089-1103, Nov. 1989

7. Implementation

Rex is implemented by a 5,000 line Modula-2 program. The program makes heavy use of a
library of reusable Modula-2 modules currently comprising 3,000 lines of code [Gro87]. Of the
5,000 lines of Rex 1,500 lines are generated by tools:

Rex 20

- 500 lines for the scanner are generated by Rex itself.

- 1000 lines for the parser are generated by the LALR(1) parser generator lalr.

How can Rex generate a part of itself before its existence? Well, the scanner has been
bootstrapped using LEX. The first version of the scanner was a separate C program generated by
LEX which wrote the internal representation of the tokens on a file. A simple hand written
scanner read the tokens from this file during construction of Rex. After Rex was operational it
could generate its own scanner in Modula-2.

And how is Rex working? It differentiates between constant regular expressions and non-
constant ones as defined in [Gro89]. The non-constant regular expressions constitute a nondeter-
ministic finite automaton. The so-called subset construction algorithm is used for conversion
into a deterministic finite automaton. Then an algorithm to minimize the number of states is ap-
plied. After extending the automaton to a tunnel automaton the constant regular expressions are
added in linear time using the algorithm described in [Gro89]. The sparse matrix to control the
automaton is compressed into a data structure called "comb vector" [ASU86] to save space.

The key to the performance of scanners generated by Rex lies in the following facts:

- access to the "comb vector" table is fast

- input happens rarely because blocks of characters are transferred

- no check for the last character of a block is necessary because of the sentinel technique
used

- the same holds for the check of stack underflow for the stack to record the passed states

- the treatment of right context is efficient and only necessary in a few cases because partial
evaluation has been applied

8. Differences to LEX

Some specialists might want to know about the differences between Rex and LEX [Les75] (see
Table):

Table: Syntactical differences between Rex and LEX:

Meaning LEX Rexii
delimiter for character classes [] { }
complement of character classes [ˆ] - { }
any character . ANY
left justification ˆ <
right justification $ >
replicator {n} [n]
replicator {m,n} [m-n]
delimiter for start states < > # #
escape representation for characters \octal \decimal
scanner routine yylex <Scanner>_GetToken
access to matched string yytext <Scanner>_GetWord ()
length of matched string yyleng result of <Scanner>_GetWord ()
output of matched string ECHO yyEcho
retain part of matched string yyless yyLess
initial start state INITIAL STD
change of start state BEGIN yyStart ()

Rex 21

Advantages of Rex:

+ The standard or initial start state has a documented name: STD.

+ The list of start states can be inverted using the operator NOT to specify that a rule is valid
in all states except the listed ones.

+ The specifications can be written unformatted - white space in the form of blanks, tabs, and
newlines is skipped.

+ Identifiers used to refer to named regular expressions are written without enclosing braces
’{’ ’}’.

+ Rex automatically calculates the source position of the tokens in the fields Line and
Column of the variable <Scanner>_Attribute.

+ There are predefined rules to skip the white space characters.

+ Include files up to a nesting depth of 15 can be processed.

+ Routines are provided to normalize tokens to upper or lower case characters.

+ No adjustment of the internal data structures are necessary to be able to process large
specifications.

Disadvantages of Rex:

− The action statement yymore is not available.

− The action statement REJECT is not available - Rex can only find one solution and not all
like LEX.

− The redirection of input with the procedure yywrap is not available.

− The character set is fixed to the one of the host computer. There is no way to specify a dif-
ferent character set to be able to generate scanners for target computers with a different
character set.

Rex 22

Appendix 1: Syntax of the Specification Language

specification : [name] [code] [define] [start] rules
.

name : SCANNER [Ident]
.

code :
| code EXPORT TargetCode
| code GLOBAL TargetCode
| code LOCAL TargetCode
| code BEGIN TargetCode
| code CLOSE TargetCode
| code DEFAULT TargetCode
| code EOF TargetCode
.

define : DEFINE definition *
.

start : START identList
.

rules : RULE rule *
| RULES rule *
.

definition : Ident ’=’ regExpr ’.’
.

identList : Ident
| identList Ident
| identList ’,’ Ident
.

rule : patternList ’:’ TargetCode
| patternList ’:-’ TargetCode
.

patternList : pattern
| patternList ’,’ pattern
.

pattern : [startStates] [’<’] regExpr [’/’ regExpr] [’>’]
.

startStates : ’#’ identList ’#’
| NOT ’#’ identList ’#’
.

regExpr : regExpr ’|’ regExpr
| regExpr regExpr
| regExpr ’+’
| regExpr ’*’
| regExpr ’?’
| regExpr ’[’ Number ’]’
| regExpr ’[’ Number ’-’ Number ’]’
| ’(’ regExpr ’)’
| charSet
| Char
| Ident
| String
| Number
.

charSet : ’-’ charSet
| ’{’ range * ’}’
.

range : Char
| Char ’-’ Char
.

Char : character

Rex 23

| ’\’ digit +
| ’\’ n
| ’\’ t
| ’\’ v
| ’\’ b
| ’\’ r
| ’\’ f
| ’\’ character
.

Ident : letter letter_or_digit *
.

letter_or_digit : letter
| digit
| ’_’
.

String : ’"’ character * ’"’
.

Number : digit +
.

Target_code : ’{’ character * ’}’
.

Rex 24

Appendix 2: Example Specification of a Modula-2-Scanner in C

GLOBAL {
include "Memory.h"
include "StringMem.h"
include "Idents.h"

int level = 0;

void ErrorAttribute (Token, Attribute)
int Token;
tScanAttribute Attribute;
{
}

}

LOCAL {
char Word [256];
tIdent ident ;
tStringRef ref ;
int length ;

}

DEFAULT {
printf ("illegal character: "); yyEcho; printf ("\n");

}

DEFINE

digit = {0-9} .
letter = {a-z A-Z} .
cmt = - {*(\t\n} .

START comment

RULE
"(*" :- {++ level; yyStart (comment);}

#comment# "*)" :- {-- level; if (level == 0) yyStart (STD);}
#comment# "(" | "*" | cmt + :- {}

/* The procedure PutString is imported from the module StringMem(ory).
It is used to store the string representation of some tokens. */

#STD# digit + ,
#STD# digit + / ".." : {length = GetWord (Word);

ref = PutString (Word, length);
return 1;}

#STD# {0-7} + B : {length = GetWord (Word);
ref = PutString (Word, length);
return 2;}

#STD# {0-7} + C : {length = GetWord (Word);
ref = PutString (Word, length);
return 3;}

#STD# digit {0-9 A-F} * H : {
length = GetWord (Word);
ref = PutString (Word, length);
return 4;}

#STD# digit + "." digit * (E {+\-} ? digit +) ? : {
length = GetWord (Word);
ref = PutString (Word, length);
return 5;}

#STD# ’ - {\n’} * ’ |
\" - {\n"} * \" : {length = GetWord (Word);

ref = PutString (Word, length);
return 6;}

Rex 25

#STD# "#" : {return 7;}
#STD# "&" : {return 8;}
#STD# "(" : {return 9;}
#STD# ")" : {return 10;}
#STD# "*" : {return 11;}
#STD# "+" : {return 12;}
#STD# "," : {return 13;}
#STD# "-" : {return 14;}
#STD# "." : {return 15;}
#STD# ".." : {return 16;}
#STD# "/" : {return 17;}
#STD# ":" : {return 18;}
#STD# ":=" : {return 19;}
#STD# ";" : {return 20;}
#STD# "<" : {return 21;}
#STD# "<=" : {return 22;}
#STD# "<>" : {return 23;}
#STD# "=" : {return 24;}
#STD# ">" : {return 25;}
#STD# ">=" : {return 26;}
#STD# "[" : {return 27;}
#STD# "]" : {return 28;}
#STD# "ˆ" : {return 29;}
#STD# "{" : {return 30;}
#STD# "|" : {return 31;}
#STD# "}" : {return 32;}
#STD# "˜" : {return 33;}

#STD# AND : {return 34;}
#STD# ARRAY : {return 35;}
#STD# BEGIN : {return 36;}
#STD# BY : {return 37;}
#STD# CASE : {return 38;}
#STD# CONST : {return 39;}
#STD# DEFINITION : {return 40;}
#STD# DIV : {return 41;}
#STD# DO : {return 42;}
#STD# ELSE : {return 43;}
#STD# ELSIF : {return 44;}
#STD# END : {return 45;}
#STD# EXIT : {return 46;}
#STD# EXPORT : {return 47;}
#STD# FOR : {return 48;}
#STD# FROM : {return 49;}
#STD# IF : {return 50;}
#STD# IMPLEMENTATION : {return 51;}
#STD# IMPORT : {return 52;}
#STD# IN : {return 53;}
#STD# LOOP : {return 54;}
#STD# MOD : {return 55;}
#STD# MODULE : {return 56;}
#STD# \NOT : {return 57;}
#STD# OF : {return 58;}
#STD# OR : {return 59;}
#STD# POINTER : {return 60;}
#STD# PROCEDURE : {return 61;}
#STD# QUALIFIED : {return 62;}
#STD# RECORD : {return 63;}
#STD# REPEAT : {return 64;}
#STD# RETURN : {return 65;}
#STD# SET : {return 66;}

Rex 26

#STD# THEN : {return 67;}
#STD# TO : {return 68;}
#STD# TYPE : {return 69;}
#STD# UNTIL : {return 70;}
#STD# VAR : {return 71;}
#STD# WHILE : {return 72;}
#STD# WITH : {return 73;}

#STD# letter (letter | digit) * : {
ident = MakeIdent (TokenPtr, TokenLength);
return 74;}

Rex 27

Appendix 3: Example Specification of a Modula-2-Scanner in Modula-2

GLOBAL {
FROM Strings IMPORT tString ;
FROM StringMem IMPORT tStringRef , PutString ;
FROM Idents IMPORT tIdent , MakeIdent ;

VAR level : CARDINAL;

PROCEDURE ErrorAttribute (Token: INTEGER; VAR Attribute: tScanAttribute);
BEGIN
END ErrorAttribute;

}

LOCAL {
VAR

Word : tString;
ident : tIdent;
ref : tStringRef;

}

BEGIN { level := 0; }

DEFAULT {
IO.WriteS (IO.StdOutput, "illegal character: "); yyEcho; IO.WriteNl (IO.StdOutput);
}

DEFINE

digit = {0-9} .
letter = {a-z A-Z} .
cmt = - {*(\t\n} .

START comment

RULE
"(*" :- {INC (level); yyStart (comment);}

#comment# "*)" :- {DEC (level); IF level = 0 THEN yyStart (STD); END;}
#comment# "(" | "*" | cmt + :- {}

#STD# digit + ,
#STD# digit + / ".." : {GetWord (Word);

ref := PutString (Word);
RETURN 1;}

#STD# {0-7} + B : {GetWord (Word);
ref := PutString (Word);
RETURN 2;}

#STD# {0-7} + C : {GetWord (Word);
ref := PutString (Word);
RETURN 3;}

#STD# digit {0-9 A-F} * H : {
GetWord (Word);
ref := PutString (Word);
RETURN 4;}

#STD# digit + "." digit * (E {+\-} ? digit +) ? : {
GetWord (Word);
ref := PutString (Word);
RETURN 5;}

#STD# ’ - {\n’} * ’ |
\" - {\n"} * \" : {GetWord (Word);

ref := PutString (Word);
RETURN 6;}

#STD# "#" : {RETURN 7;}
#STD# "&" : {RETURN 8;}

Rex 28

#STD# "(" : {RETURN 9;}
#STD# ")" : {RETURN 10;}
#STD# "*" : {RETURN 11;}
#STD# "+" : {RETURN 12;}
#STD# "," : {RETURN 13;}
#STD# "-" : {RETURN 14;}
#STD# "." : {RETURN 15;}
#STD# ".." : {RETURN 16;}
#STD# "/" : {RETURN 17;}
#STD# ":" : {RETURN 18;}
#STD# ":=" : {RETURN 19;}
#STD# ";" : {RETURN 20;}
#STD# "<" : {RETURN 21;}
#STD# "<=" : {RETURN 22;}
#STD# "<>" : {RETURN 23;}
#STD# "=" : {RETURN 24;}
#STD# ">" : {RETURN 25;}
#STD# ">=" : {RETURN 26;}
#STD# "[" : {RETURN 27;}
#STD# "]" : {RETURN 28;}
#STD# "ˆ" : {RETURN 29;}
#STD# "{" : {RETURN 30;}
#STD# "|" : {RETURN 31;}
#STD# "}" : {RETURN 32;}
#STD# "˜" : {RETURN 33;}

#STD# AND : {RETURN 34;}
#STD# ARRAY : {RETURN 35;}
#STD# BEGIN : {RETURN 36;}
#STD# BY : {RETURN 37;}
#STD# CASE : {RETURN 38;}
#STD# CONST : {RETURN 39;}
#STD# DEFINITION : {RETURN 40;}
#STD# DIV : {RETURN 41;}
#STD# DO : {RETURN 42;}
#STD# ELSE : {RETURN 43;}
#STD# ELSIF : {RETURN 44;}
#STD# END : {RETURN 45;}
#STD# EXIT : {RETURN 46;}
#STD# EXPORT : {RETURN 47;}
#STD# FOR : {RETURN 48;}
#STD# FROM : {RETURN 49;}
#STD# IF : {RETURN 50;}
#STD# IMPLEMENTATION : {RETURN 51;}
#STD# IMPORT : {RETURN 52;}
#STD# IN : {RETURN 53;}
#STD# LOOP : {RETURN 54;}
#STD# MOD : {RETURN 55;}
#STD# MODULE : {RETURN 56;}
#STD# \NOT : {RETURN 57;}
#STD# OF : {RETURN 58;}
#STD# OR : {RETURN 59;}
#STD# POINTER : {RETURN 60;}
#STD# PROCEDURE : {RETURN 61;}
#STD# QUALIFIED : {RETURN 62;}
#STD# RECORD : {RETURN 63;}
#STD# REPEAT : {RETURN 64;}
#STD# RETURN : {RETURN 65;}
#STD# SET : {RETURN 66;}
#STD# THEN : {RETURN 67;}
#STD# TO : {RETURN 68;}

Rex 29

#STD# TYPE : {RETURN 69;}
#STD# UNTIL : {RETURN 70;}
#STD# VAR : {RETURN 71;}
#STD# WHILE : {RETURN 72;}
#STD# WITH : {RETURN 73;}

#STD# letter (letter | digit) * : {
GetWord (Word);
ident := MakeIdent (Word);
RETURN 74;}

Rex 30

Appendix 4: Example Specification of a Scanner for Rex

EXPORT {

FROM Idents IMPORT tIdent ;
FROM StringMem IMPORT tStringRef;
FROM Texts IMPORT tText ;
FROM Positions IMPORT tPosition;

TYPE
tScanAttribute = RECORD

Position : tPosition ;
CASE : INTEGER OF
| 1: Ident : tIdent ;
| 2: Number : SHORTCARD ;
| 3: String : tStringRef ;
| 4: Ch : CHAR ;
| 5: Text : tText ;
END;

END;

PROCEDURE ErrorAttribute (Token: INTEGER; VAR Attribute: tScanAttribute);
}

GLOBAL {

FROM SYSTEM IMPORT ADDRESS;
FROM Strings IMPORT tString, Concatenate, Char, SubString,

StringToInt, AssignEmpty, Length;
FROM Texts IMPORT MakeText, Append;
FROM StringMem IMPORT tStringRef, PutString;
FROM Idents IMPORT tIdent, MakeIdent, NoIdent;
FROM Errors IMPORT ErrorMessage, Error;
FROM ScanGen IMPORT Language, tLanguage;
FROM Positions IMPORT tPosition;

CONST
SymIdent = 1 ;
SymNumber = 2 ;
SymString = 3 ;
SymChar = 4 ;
SymTargetcode = 5 ;
SymScanner = 37 ;
SymExport = 32 ;
SymGlobal = 6 ;
SymLocal = 31 ;
SymBegin = 7 ;
SymClose = 8 ;
SymEof = 34 ;
SymDefault = 36 ;
SymDefine = 9 ;
SymStart = 10 ;
SymRules = 11 ;
SymNot = 30 ;
SymDot = 12 ;
SymComma = 13 ;
SymEqual = 14 ;
SymColon = 15 ;
SymColonMinus = 35 ;
SymNrSign = 33 ;

Rex 31

SymSlash = 16 ;
SymBar = 17 ;
SymPlus = 18 ;
SymMinus = 19 ;
SymAsterisk = 20 ;
SymQuestion = 21 ;
SymLParen = 22 ;
SymRParen = 23 ;
SymLBracket = 24 ;
SymRBracket = 25 ;
SymLBrace = 26 ;
SymRBrace = 27 ;
SymLess = 28 ;
SymGreater = 29 ;

BraceMissing = 13 ;
UnclosedComment = 14 ;
UnclosedString = 16 ;

VAR
level : INTEGER ;
string : tString ;
NoString : tStringRef ;
Position : tPosition ;

PROCEDURE ErrorAttribute (Token: INTEGER; VAR Attribute: tScanAttribute);
BEGIN

CASE Token OF
| SymIdent : Attribute.Ident := NoIdent;
| SymNumber : Attribute.Number := 0;
| SymString : Attribute.String := NoString;
| SymChar : Attribute.Ch := ’?’;
| SymTargetcode : MakeText (Attribute.Text);
ELSE
END;

END ErrorAttribute;
}

LOCAL { VAR TargetCode, String, Word: tString; PrevState: SHORTCARD; }

BEGIN {
level := 0;
AssignEmpty (string);
NoString := PutString (string);

}

EOF {
CASE yyStartState OF
| targetcode ,
set : ErrorMessage (BraceMissing , Error, Attribute.Position);

| comment : ErrorMessage (UnclosedComment , Error, Attribute.Position);
| CStr1, CStr2,
Str1, Str2 : ErrorMessage (UnclosedString , Error, Attribute.Position);

ELSE
END;
yyStart (STD);

}

DEFINE
letter = {A-Z a-z} .
digit = {0-9} .

Rex 32

string = - {"\n} .
cmtch = - {*\t\n} .
code = - {{\}\t\n\\’"} .
StrCh1 = - {’\t\n} .
StrCh2 = - {"\t\n} .
CStrCh1 = - {’\t\n\\} .
CStrCh2 = - {"\t\n\\} .

START targetcode, set, rules, comment, Str1, Str2, CStr1, CStr2

RULES

#targetcode# "{" : {
IF level = 0 THEN

MakeText (Attribute.Text);
AssignEmpty (TargetCode);
Position := Attribute.Position;

ELSE
GetWord (Word);
Concatenate (TargetCode, Word);

END;
INC (level);

}

#targetcode# "}" :- {
DEC (level);
IF level = 0 THEN

yyStart (PrevState);
Append (Attribute.Text, TargetCode);
Attribute.Position := Position;
RETURN SymTargetcode;

ELSE
GetWord (Word);
Concatenate (TargetCode, Word);

END;
}

#targetcode# code + :- {
IF level > 0 THEN

GetWord (Word);
Concatenate (TargetCode, Word);

END;
}

#targetcode# \t :- {
IF level > 0 THEN

Strings.Append (TargetCode, 11C);
END;
yyTab;

}

#targetcode# \n :- {
IF level > 0 THEN

Append (Attribute.Text, TargetCode);
AssignEmpty (TargetCode);

END;
yyEol (0);

}

#targetcode# \\ ANY :- {
IF level > 0 THEN

Rex 33

GetWord (Word);
Strings.Append (TargetCode, Char (Word, 2));

END;
}

#targetcode# \\ :- {
IF level > 0 THEN

Strings.Append (TargetCode, ’\’);
END;

}

#targetcode# ’ : {
GetWord (String);
IF Language = C
THEN yyStart (CStr1);
ELSE yyStart (Str1);
END;

}

#targetcode# \" : {
GetWord (String);
IF Language = C
THEN yyStart (CStr2);
ELSE yyStart (Str2);
END;

}

#Str1# StrCh1 + ,
#Str2# StrCh2 + ,
#CStr1# CStrCh1 + | \\ ANY ? ,
#CStr2# CStrCh2 + | \\ ANY ? :- {GetWord (Word); Concatenate (String, Word);}

#CStr1# \\ \n ,
#CStr2# \\ \n :- {GetWord (Word); Concatenate (String, Word); yyEol (0);}

#Str1, CStr1# ’ ,
#Str2, CStr2# \" :- {Strings.Append (String, Char (String, 1));

yyPrevious; Concatenate (TargetCode, String);
}

#Str1, Str2, CStr1, CStr2# \t :- {Strings.Append (String, 11C); yyTab;}

#Str1, Str2, CStr1, CStr2# \n :- {
ErrorMessage (UnclosedString, Error, Attribute.Position);
Strings.Append (String, Char (String, 1));
yyEol (0); yyPrevious; Concatenate (TargetCode, String);

}

#STD, rules# "/*" :- {yyStart (comment) ;}
#comment# "*" | cmtch + :- {}
#comment# "*/" :- {yyPrevious ;}

#STD# EXPORT : {PrevState := STD; yyStart (targetcode);
RETURN SymExport ;}

#STD# GLOBAL : {PrevState := STD; yyStart (targetcode);
RETURN SymGlobal ;}

#STD# LOCAL : {PrevState := STD; yyStart (targetcode);
RETURN SymLocal ;}

#STD# BEGIN : {PrevState := STD; yyStart (targetcode);
RETURN SymBegin ;}

#STD# CLOSE : {PrevState := STD; yyStart (targetcode);

Rex 34

RETURN SymClose ;}
#STD# DEFAULT : {PrevState := STD; yyStart (targetcode);

RETURN SymDefault ;}
#STD# EOF : {PrevState := STD; yyStart (targetcode);

RETURN SymEof ;}
#STD# SCANNER : {RETURN SymScanner ;}
#STD# DEFINE : {RETURN SymDefine ;}
#STD# START : {RETURN SymStart ;}
#STD# RULE S ?: {yyStart (rules); RETURN SymRules ;}
#rules# \NOT : {RETURN SymNot ;}

#STD, rules# letter (letter | digit | _) * : {
GetWord (Word);
Attribute.Ident := MakeIdent (Word);
RETURN SymIdent;

}

#STD, rules# digit + : {
GetWord (Word);
Attribute.Number := StringToInt (Word);
RETURN SymNumber;

}

#STD, rules# \" string * \" : {
GetWord (Word);
SubString (Word, 2, Length (Word) - 1, TargetCode);
Attribute.String := PutString (TargetCode);
RETURN SymString;

}

#STD# "." : {RETURN SymDot ;}
#STD# "=" : {RETURN SymEqual ;}
#STD, set# "}" : {yyPrevious; RETURN SymRBrace ;}
#STD, set, rules# "-" : {RETURN SymMinus ;}
#STD, rules# "," : {RETURN SymComma ;}
#STD, rules# "|" : {RETURN SymBar ;}
#STD, rules# "+" : {RETURN SymPlus ;}
#STD, rules# "*" : {RETURN SymAsterisk ;}
#STD, rules# "?" : {RETURN SymQuestion ;}
#STD, rules# "(" : {RETURN SymLParen ;}
#STD, rules# ")" : {RETURN SymRParen ;}
#STD, rules# "[" : {RETURN SymLBracket ;}
#STD, rules# "]" : {RETURN SymRBracket ;}
#STD, rules# "{" : {yyStart (set); RETURN SymLBrace ;}
#rules# "#" : {RETURN SymNrSign ;}
#rules# "/" : {RETURN SymSlash ;}
#rules# "<" : {RETURN SymLess ;}
#rules# ">" : {RETURN SymGreater ;}
#rules# ":" : {PrevState := rules; yyStart (targetcode);

RETURN SymColon ;}
#rules# ":-" : {PrevState := rules; yyStart (targetcode);

RETURN SymColonMinus ;}

#STD, set, rules# \\ n : {Attribute.Ch := 012C; RETURN SymChar;}
#STD, set, rules# \\ t : {Attribute.Ch := 011C; RETURN SymChar;}
#STD, set, rules# \\ v : {Attribute.Ch := 013C; RETURN SymChar;}
#STD, set, rules# \\ b : {Attribute.Ch := 010C; RETURN SymChar;}
#STD, set, rules# \\ r : {Attribute.Ch := 015C; RETURN SymChar;}
#STD, set, rules# \\ f : {Attribute.Ch := 014C; RETURN SymChar;}

#STD, set, rules# \\ digit + : {

Rex 35

GetWord (Word);
SubString (Word, 2, Length (Word), TargetCode);
Attribute.Ch := CHR (CARDINAL (StringToInt (TargetCode)));
RETURN SymChar;

}

#STD, set, rules# \\ ANY : {
GetWord (Word);
Attribute.Ch := Char (Word, 2);
RETURN SymChar;

}

#STD, set, rules# - {\t\n\ \f\r} : {
GetWord (Word);
Attribute.Ch := Char (Word, 1);
RETURN SymChar;

}

\f :- {}
\r :- {}

References

[ASU86] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and

Tools, Addison Wesley, Reading, MA, 1986.

[Gro87] J. Grosch, Reusable Software - A Collection of Modula-Modules, Compiler
Generation Report No. 4, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Sep.

1987.

[Gro89] J. Grosch, Efficient Generation of Lexical Analysers, Software—Practice &

Experience 19, 11 (Nov. 1989), 1089-1103.

[Les75] M. E. Lesk, LEX — A Lexical Analyzer Generator, Computing Science Technical
Report 39, Bell Telephone Laboratories, Murray Hill, NJ, 1975.

Rex 1

Contents

1. Introduction .. 1

2. Overview .. 1

3. Specification Language .. 2

3.1. Lexical Conventions .. 2

3.2. Regular Expressions .. 4

3.3. Ambiguous Specifications ... 6

3.4. Definitions .. 6

3.5. Start States ... 7

3.6. Scanner Name .. 7

3.7. Target Code .. 8

3.8. Source Position .. 9

4. Predefined Items .. 10

4.1. Definitions .. 10

4.2. Start States ... 10

4.3. Rules .. 10

4.4. Action Statements .. 10

5. Interface of the Generated Scanners .. 11

5.1. C ... 11

5.1.1. Scanner Interface ... 11

5.1.2. Source Interface ... 13

5.1.3. Scanner Driver ... 14

5.2. Modula-2 .. 14

5.2.1. Scanner Interface ... 14

5.2.2. Source Interface ... 16

5.2.3. Scanner Driver ... 17

6. Usage .. 18

7. Implementation .. 19

8. Differences to LEX .. 20

Appendix 1: Syntax of the Specification Language .. 22

Appendix 2: Example Specification of a Modula-2-Scanner in C 24

Appendix 3: Example Specification of a Modula-2-Scanner in Modula-2 27

Appendix 4: Example Specification of a Scanner for Rex 30

References .. 35

